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FOREWORD

Despite the fact that pavachutes have been in use for many years,
no coimpletzly satisfactory theory exists for the prediction of stresses
in a canopy. This hinders good design. This report describes =
mathematical medel for predicting canopy shape and stresses in stesady
descent which is superior to those now in use. This model is embodied

in a computer program that can be used for design studies if desiregd.
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ABSTRACT

A theory is presented for the stress analygis of 3 flat,
¢ircular parachute in steady, vertical descent. Unlike
previous treatments of the problem, this theory does not
assume that the shape is known. 1Instesd the th2ory presentd
relations between the pressure distribution in the opened
condition and the shape, drag and stresses in lines and
fabric. The theory results in a non-linear third order
system of ordinary differential equations with boundary
conditions at both vent and skirt. This system was solved
by a computer program based on the Runge-Kutta method of
numerical integration. The results are in fairly good
agreement with measurements on parachutes. The computer
program can be used for studies of effects of design changes
on shape, drag and stress, and the results of a sméll s tudy

of this sort are included.
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1. INTRODUCTION

In recent years tepsated attempts have been mad: to
analyze the behavior of parachutes and devise formulas
suitable for their design. Much progress has been made,
but the stsate of knowledge is still not wholly satisfactory.
The best analyses currently avallable, Heinrich and Jamisonl
snd Topping, Marketos and Costakosz rely ¢: knowing the
deformed shape as well as the pressure distribution before
the stresses are analyzed even in steady descent. Present
knowledge about large deflections of structures suggests
that it should be nussible to calculate the stressss and
deformed shn2 concurrently, although some assumptions must
still be made about the pressure distribution in the
deformed state. We shall undertake to do this in the
present paper.

To be specific, we sanalyze a flat circular parachute in
steady, vertical descent by an approxinate theory for large
elsstic deflections. This theory is iike (but goes beyond)
that of Heinrich and Jsmisonl. The parachute is regarded as
a completely flexible sctructure, i. e. none of its elements
{cloth, cords, reinforcing rape, etc} have any bending
stiffiness. The resulting analysis regsembles the large-
deflection (non-linszar) membrane versien of thin shell theory
but differs from {t because of the important part played by
the cords. A number of assumptions are made, of which the

moat impertant are listed below:
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(1) The atrains {n the fabric and cords are small even
though the deflections are large.

(1) The fabric i3 suppoeged to possess no resistance
to strestes in the meridional (re&dial) direction, all forces
in this directicn being resiated solely by the cords.

({41} Corresponding points on each govre experience
{dantical stresses and deformations, and the gsame is true
for each cord, i. e. the deformation is, loosely speaking,
axially-axisymmetric.

(1v) The circumferential radius of curvature of the gores
iz everywhere much smaller than the meridional radius of
curvature.

{v) Por esch gore points on a circular arc about the axis
of the undeformed parachute lie in a plane perpendicular to
the cords after deformation.

The raalysis, which is described in the next Section,
ljeads to a non-linear third-order system of ordinary differential
equations, which cannot be integrated in closed form. Therafore
a computer program was written for the sciution of the system,
based on the Rupge-Kutts method of numerical integration. The
rprogras is autcmatic enough so that it is conveaient to study
the affect on the deformstions, stresses, drag and parachute
welight of any two, arbitrarily chosen, design parxmeters, such
as the verticsl velocity, number >f gores or elastic

modull of various structural elesents. A description
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of the progrem is given in Section 3 , and examples of the
regults obtained are displayed in Section 4. Section §

contains a discussion of the analysis and results.
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2. ANALYSIS

In analyzing the parachute we first treat a generic one
of the gorxes, which {s assumed to be a filat sector of a circle
in the undeformed state. If G i3 the number of gores, then the

sectorial angle in both the undeformed and deformed states is

a - «n/G (1
We examine first the kinematics, then the statics and finally
the material behavior of the fabric.

Kinematics: Let A and B denote the material points

where a generic circular arc in the undeformed staste meets
the cords that border the gore. In the undeformed state this
arc, XE, has length, Rg; see Figure 1. Ve assume that after
deformation the arc AB forms a plane circular arc, the plane
of the arc being perpendicular to the deformed cords, Figure 2.
The points A and B are now at a distance r from the.axis and
are separated by a distance rq. If r is the radius of this
circular arc and 28 is the sectorial t:gle, then wz see from
Figure 3 that, provided 05351/2,

r sing = (1/2)rq )
AB

2gr = Deformed length of arc AB (3
AB

If g = g/2, we may have a situation where adjacent gores are
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Figure

1: Undeformed parachute gore




Figure 2: Deformed parachute gore




Figure 3: Section of deformed gore normal to cords, ¢'=0




pressed againgt each other with a contact length o' as shown
in Figure 4.

In this case

g = (C/2)ra (4)

Deformed length of AB = 20'+ﬂtAB

= 20'+(n/2)ra (5)
The undeformed length of AB is Ra, 8c we may write
formulas for the circumferential fabric strain, yf, which 1is

assumed small,
[

Y¢ = change in length/original length

Y£ = (2Br,g/Ra) - 1 1f B<n/2 (6)

v = {[20'+(7/2)ra]/Ra} - 1 1f B = n/2 (7)
Statics: If Ng is the circumferential teansion in the
gore fabric, with dimenaions (lbs/ft) and p is the pressure
di fference between the inside and outside of the surface,

then equilibrium requires

Nf - ptAB (8)
The forces exerted by the fabric on the cords,
F per unit length of cord are shown in Figure 5. The

forces in the circumferential and normal directions,

Ng and N,,, are found from conditions of equilibrium,

HB - Nf zos B (9)

Np = 2N, sin8 {10)




Figure 4: Section of deformed fgore normal to cords,c'#0
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Forces transmitted from gore fabric to cords
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If we use (2) and (8), we obtain for 8 ¥ 0

Ne « (1/2)pre cot 6 (11)

pra (12)

These formulas are valid both for B<n/2 and 8 = n/2, and
in the latter case they imply

N =
8 0.

Material Behavior: We assume that the fabric obeys a
inear elastic law,

N, = E

where Ef is the elastic constant of the fabric when stressed

in the circumferential directicn. If 8<n/2, we may use (2}, (6)

and(8)to rewrite this rtelation fn the form

r/R = 8-1{5i08+(1/2)(P/Ef)Y0} {14)
This can also be written, with the atd of {(il) =3
= -1
r/R B *sin 8{1+(Ne/gf)8¢c g},
‘or
Ne/2f = cos B{R csc 8 {c/R} -1} {15)

We see from (15) that fia the limit az & - 0 we pdtain
Ny/Eg + (z/R) -1.
This caa be interpretzd tc mezn that, when the fabric is stratchad
flat between the cords, {. e., when there i3 negligible bulging
of the gores, we recover the linear elastic relaticn between

circumferential stress resultant and circumferential strain.
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In the calculations we shall adopt (15) together with
formulas equivalent to (14) and (13)
sin 8 - B(r/R)+(1/2)(P/Ef)ru = 0 (16}
Nf - Ef{BcscB(r/R) -1} 717)
as expressing the material behavior of the fabric when
Bex/2,
When B = n/2, the elastic law (13) tmplies
(1/2)(p/Ef)ru = {[20'+(n/2)ral/Ra} -1
or
o' = (1/2)raql -(1/2)(r/R)+(1/2)(P/Ef)ru} (18)
together with
N =0 (19)
o
Nf = (1/2)prqg (z0)
We have now compieted the portion of the analysis that

dea)ls with the fabric,

In analyzing the fabric we have neglected the meridional
stresses on the assumption that stresses of this type are
borne entirely by the cords. We must now, therefore, analy:ze
the statics and material behavier of the cords.

Statics of Cords: If N, is the tension force in the
cords, measured in 1bs, then we can write down the two
equations of force equilibrium in the direction tangential
and normal tc the cords with the aid of Figures 6 and 7.
These are

ch/ds = ZNesin(QIZ)cos¢ (21)
ch¢/ds = Nn-ZNesin(a/2)31n¢

- pra-ZNosin(u/2)51n¢ (22)

12
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Figure 6: Sketch showing that the resultant of the N
forces on a cord is a radial inward force,
2:, sin(a/2) per unit of cord length
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A partial check on the validity of these equations is

provided by studying their behavior as a+* 0. If we set N = ans
c

these chould reduce to the equations of equilibrium of membrane

2

shell theory,

d(rN }/dr = N {(23)
s 6

N d(sin¢)/dr + N0(31n¢/r) = p, (24)
If we use the fact that (see Figyre 8)
dr = ds cos ¢, (25)
and observe that
(2/q)sin(a/2)>1
as a+0, we see that equations (21) and (22) reduce to the
proper limit as a~0.
Material Behavior of Cords: The strain in the cords,
Ygs 1s assumed to be small and we infer from Figure 9 that
Yo ™ (ds-dR)/dR = (dr/dR)sec¢-1
The cords are assumed to obey a linear elastic relation
N, =Ey_-= Ec{(dr/dR)secd*—l}. (26)
This completes the analysis of the cords.
To put these equations into systematic form we
cbserve that
dr/dR = (1+(NC/EC)}cos¢ = f cos ¢ 27)
where
£ = 14+(N_/E)).
Since

d/ds=(drfds) (d/dr)=(dr/ds) (dR/dr) (d/dR)

15
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Figure 8: Geometry of deformed cord
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Figure 9: Derivation of formula for strain in cord
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we find from (23) and (27) that

d/ds = (1/£) (d4/dR).

Thus the equstions of equilibrium and elasticity for the

cords form the system

dr/dR = f cos ¢

d4/dR = (£/N ) {pra-2N sin(a/2)sin¢}

dN /dR = ZfNesin(c/Z)cos¢

vhere

£ = L4(N_/E )

and Ng 13 determined as follows. If

1+{r/2) {(pa/Eg)~(n/R)} <O

then

¥, = wsgcosBi(r/R)Bescg-1}

where 8 18 found by solving the transcendental equation

sing - B(t/R)+(praIZEf) = 0

If

1+fr/2){(pa/Ef) - (z/R)}>0

then

Ne = 0

g' = (Ru/Z){1+(pta/ZEf) - (xr/2R)}

This 1s a third order, non-linear differential

equation system in the three unknowns r, ¢ and Nc, and

therefors we shall need three edge conditions in order

to have & unique sclucion.

At the vent, r = ry or R = Ry,

18
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the cords continue across to the opposite side of the vent
through the axis of symmetry (see Figure 10). The elastic

law for the cords implies that

= R,+ {(N (R E } 35
r,o= ROV (ROJE (35)
We shall take for another condition at the vent
é = 0, (36)

These conditions are satisfied with good accuracy in a flat
circular canopy although in other kinds of parachutes,
notably those with the pull-down vent, more complicated
conditicns must be imposed.

The third condition is at the skirt, r = r, or R o= Ro.

From the geometry, see Figure 11, we obtain

ro- L cos (r-¢,) = r +L cosoc =0 (37)
where L is the deformed length of the suspension lines
between the skirt zand the load (or corfluence point).

If Lo is the undeformed length of the suspcnsion lin:s,
and YLis the strain in the suspension 1ines (which we do

not assume small), then

1/2
L = L°(1+ZYL)

19
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Figure 10:

Sketch of the vent
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Figure 11: Geometry of skirt and load lines
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The tension force in the lines {is slmply N (Ro)’ the tension
(o
force in the cords at the skirt, hence, {f EL i{s the elastic
modulus (lbs) of the lines,
YL - NC(RO)/EL
- 1/2
L Lo[}+{2uc(no)/ELH

Then from (37) we find the conditfon which has to bhe satisfied
at the skiret,
r(Ro)+L°{1+fZNC(RO)/EL]}]/Zcos¢(R°) =0 (38)

We have therefore reduced the problem of finding the
deformad shape and stresses in the parachute to that of
solving the svstem of three, non-linear, ordinary differential
equations (28) - (30) for r(R) and ¢(R) and NC(R). The
quantities f and NB' which occur in the right sides of (28) -
(30), are determined as functions of NC, r and R by means of
(31) -~ (34). The edge conditions on the differengial equation
system are (35), (36) and (38).

When this system has been solved, the drag, or weight of
the load, can be found from

D = GNC(Ro)sin¢(R°) (39)
Also the deformed shape is found by calculating the cord
profile, r{(R) and Z(R), and the gore centerline profile,
rg(R) and Zg(R), see Figure 12, In this calculation r(R)
is of course known directly from the differential equation

solution, but Z(R) must be found by integrating

22




gore profile
cord

Mgure 12: Profiles of deformed cord and gore centerline
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d7 = dr tan ¢ = {(dr/dR) dR tan ¢

and so we find with the aid of (28)

Z ={f (R')sin¢(R')dR'

Jer a s

Z = {1+(NC(R')/Ec}ain¢(R')dR'. (40)
R' =0

The gore centerline profile is then found, as in Figure 12,

r8 = r+ésing (41)

zg = Z-8cosé (42)

wvhere 8, the depth of centerline bulging, is given by
different formulas for o' = 0 and o'>0. 1If o' = 0,
8<x/2 and (see Figure 3)

$ = tAB(I-cosB) = (1/2) ra(l-cosB)/ain8

= (1/2)raten(8/2) (43)
If 0'>0, 8 = »/2, we find from Pigure &
§ = (1/2) rats'.

(44)
We shall now re-phrase this entire system of equations in

dinensionlaess form by iniroducing the new definitions

‘-xRi, r"YRi L .Jki’ R = xR ,
o o o {
Ne = Bon,, Ng = Egn ., Nf = Efnf' Z, = zgR
P=q2E /R, Ug= EeRy /B, U

D'!c"’ a! -oRi, Z = zRi § = AR

24




The equations become
dy/dx = f cos¢
dé/dx = (ZUff/n ){quy-nc sin(a/2)sing¢}
s

dns/dx = 2fU ncsin(a/Z)cos¢

f
f = 1+n
S
1f
l+qay-{ny/(2x) ]<0
then
n = cosB{B(y/x)cscB -1}

c
where B satisfies

sin 8 - By/x~qay = O
and 1f

l1+qay-(ny;2x)20
then

n, = 0, B8=x/2

o= (1/2)xa{l+qay-(ny/2x)}

the edge conditions are

ng(1) = y(1)-1

$(1) = 0O

y(x°)+3ﬁ+[zn8(x°)/UL]}1/2c0s¢(xo) =0

The dimensionless load or drag 1is

W -Gns (xo)sirw(xo) .

25
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X

z(x) ij {1+n8(x')}sin¢(x')dx' (58)
o
ys = y+4sin ¢ (52)
z = z-Acos ¢ (60)
g
and
& = (1/2)yatan(B/2) 1f B<n/2 (61)
. A= o+(1/2)y«a if B = n/2 (62)

In discussing the pressure and stress distributions it is
also convenient to define dimensionless stress, drag and pressure
coefficients in a manner different from the dimensionless

quantities previously defined*. We shall take

Cp = p/{(l/Z)sz} = pressure coefficient

c - D/{(I/Z)DVZﬂROZ} = drag coefficient
[+

L) 2 .
C. = Nc/{(IIZ)DV“ﬂRo } = cord stress coefficien:

Cf = NfRO/{(I/Z)pvanoz} = fabric stress coefficient

If the foregoing analysis is correct, we must satisfy the
3rd order differential equation system (46) -~ (49) together with
the auxiliary equation (50) - (53) and the edge condition (54) -
(56). This system was taken as the basis for the computer program.

The numerical analysis underlying the computer program Is described in tte

next Section.

*Notice that because cf (13), (26) and (35) the dimensionless stresses

n. and n defined in (45), are also respectively just the strains

f st

Yf’ Y"
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3. NUMERICAL ANALYSIS OF THE PROBLEM

The numerical analysis of this problem consists primarily
of solving the differential equation system (46) - (48) by
numerical means and secondarily satisfying the edge condiclions.
We snall deal below with these two aspects of the problem and
then describe other aspects of the computer program.

The treatment of the differential equation system is
based on the well-known Runge-Kutta method for numerical
integration. The procedure is not gquite routine because
of the need to evaluate n. and insert it in the right side
of (47) and (48) at each step, nc being determined by (50) -
(52). 1In particular, if

1+qay-{ny/(2x) }<0,
we must determine g by solving (51) and then evaluating tc

from (50). The solution of (51) was accomplished by using

the Newton - Raphson iteration defined by

8 - 8 _{icy+sin8—8(Y/X) } (66)
k+1 k cos8 - (y/x)

As usual with this procedure convergence is uncertain. However,
it became clexr after a little study that convergence occurraed
when the initial g was chesen well above the vaiue of g for which
cos g8 = y/x.
This condition was satisfied by choosing as starting values
B = .4 if ¢>0

1/2

€ = (Y/x)—1~




b

(i

In order to avoid difficulties for small values of 8
in (50), explicit polynomial approximations were used for the
trigonometric function, {. e.,
4

2
cos R — 1—C18 +028

2
sin B $:B(1-sle +szea}

1° CZ' Sl’ S, constants

4

With these approximations we may write (66) and (50) as

qcy-ete+82(sl—szs%l

Br+1 == Bys z Bk - B (67)

2 2
e+8 (Cl-CZB )

2 2
{e+B°(S_.-S.8 )}
12 {1-¢C 2+ 4} (6R)
0 — - 13 c,8 (68)

[+

9 2
{1-8 (51“328 )}

These formulas are sufficiently accurate for practical purposes
and are well-behaved for OsBsn/2,

Because the edge conditions (54) - (56) are not all applied
at the same point, it is necessary to adopt a trial-and-error
scheme in order to satisfy them. This {s begun by assuming a
value for the deformed vent radius, y(l1). Next the values of

ns(l) and ¢(1) are found from (54) and (55), n_ (1) is evaiuated

c
as in the preceding paragraph and we can then begin tha Runge-
Kutta procedure for integrating the differential equation system.

With this procedure the solution is built out in the x-direction

until the values at the skirt, y(xo), ¢(xo) and ns(xo) are obtained.

28




These values should satisfy (56). Usually, cof course, they will
not, and we must change the assumed value of y(l) and start again.
In the program this process is made automatic by including a
subroutine that applies the Rule of False Position when a sign
change is found in the left side of (56).

In the program a general pressure distribution is assumed,
given by

2 3
CP A+ A1¢ + A2¢ +A3¢ (69)

2

wide choice of pressure distributions. The scarcity of reliable

The constants Ao' Al, A, and A3 are read in and permit a fairly

information on pressure distributions makes this procedure
necessary. It is worth noticing that Cp is assumed to be a
function of ¢ (the deformed cord angle) and so depends to a
certain extent on the deformed shape.

After finding the complete solut:on, satisfying all the
edge conditions, the program carries out the numerical integration
of (58), using Simpson's Rule, and calculates the c¢cylindrical
coordinates of the cord and gore centerlines by means of (59) -
(62).

In order to make the program useful for design purposes,
provision is made for the ccomputation of certain information
beyond merely the shape and stresses. This extia information
includes an analysis of the parachute weight, 1. e.,the
distribution of the total weight among the di fferemt structural

elements (fabric, cords, fixtures etg). Also the maximum

29




cord and fabric stresses, as well as the vent and load line
stresses, are calculated and compared with the respective
breaking stresses to find safety factors for each structural
element. Warning messages are printed if the safety factors
fall below unity.

The program is arranged so that in one pass the user may
choose any two of the input quantities and vary these
independently by chosen numbers of chosen increments, so that
the effect on the solutions of changes in these quantities
may be studied. For instance, the drop velocity, V, and fabric
modulus, E., may be varicd, or the effect of changing two constants

<

in the hypothetical pressure distribution (69) may be found.
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4. EXAMPLES OF RESULTS

This program was used to study the effects of different
variables on the shape, drag and stresses. For this purpose a
basic set of parameter values was chosen, typical of the C-9 canopy.

Vent radius = 1.4 ft

Ratio of skirt to vent radii = 10

No. of gores = 28

Suspension Line Length = 28 f¢t

Elastic Modulus of Cords = 2 x 103 1bs

Elastic Modulus of Fabric = 2 x 103 1bs/ft

Elastic Modulus of Load Lines = 2 x 103 1lbs

The muss density of alr was taken as
b= 2 x 1073 lbmsec/ft’.
and the drop velocity as
v = 20 ft/sec
The basic pressure distribution was taken as a constant function

Cp = 1.5, defined by

A, = 1.5, Al - A2 - A3 = 0

For this basic configuration the following results were fouad:

c, - Drag coefficient = .625
o

D = max. diameter = .671 D
P o
@o = cord angle at skirt = 109°

or
) -¢°~(w/2) = 19°

31




where Do = 2Ro is the flat circular diameter and © is the angle
between the suspension lines and the canopy axis. The deformed shape
is shown in Figure 13, and the cord and fabric stress coefficients
are depicted in Figure 1l4.

The theory was further tested by investigating the influence
of various parameters on the shape, drag and stresses. A large
number of results was obtained, the most important of which are
displayed in Tables 1 and 2. We may summarize the main features as
follows:

(1) Table 1 shows that DP/DO’ and hence the shape, is not
greatly affected by any of the parameter changes. The suspension
line length ratio, A, has the greatest effect on Dp/Do, but its
effect is not especially large.

(11) According to Table 1, A is the only canopy parameter
that affects the drag coefficient significantly. The effects of
G and V are small, and the elastic constants have negligible influence.

(141) The angle, 0, of the load lines, which is the same as the

angle of the (ords at the skirt, is seen in Table 1 to be significantly
affected only by changes in {}.

(iv) We conclude from Table 1 that G is the only variable that

greatly influences Cc nax although A has some effect. 1In contrast

Cf max 1is perceptibly affected by changes in all the canopy parameters.
(v) The cord stress {s least at the vent and increases to a
maximum at the maximum diameter, which is usually at x = 9,6 i, e.

near the skirt. Hence the familiar formuls

Cc = CD /G cos O,

o

32
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Figure 14: Cord and fabric stress coefficients for basic configuration




TABLE 1

Parametsr D /Do CD Max C Max Cf O = QO—(n/Z)
P [o]
E
[o4
1000 .673 627 .0237 L2664 19°
2000* .671 .626 .0237 .185 19°
3000 671 .625 .0236 .155% 19°
E
400 .672 .626 .0237 .087 19°
1200 .672 .626 .0237 .140 19°¢
2000% .671 .626 L0237 .185 19°
G
16 .665 .614 L0406 .219 19°
28%* .671 .626 .0237 .185 190
40 .674 .630 .0167 .155 10°
A
.7 .645 .549 .0218 .175 269
1.0% 671 .626 .0237 .185 19°
1.3 .687 671 .0248 .191 15°¢
v
10 .670 .623 .0236 .210 19°
20+ .671 .626 .0237 .185 19°
30 .673 .629 .0238 176 19°

*Denotes value

of variable for the basic configuration.
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TABLE 2
Constant C D max/D c Max C Max C o]
P o D
[o]
[o]
1.2 671 .500 .0189 .150 19
1.5% 671 .626 .0237 . 185 19
1.8 .672 .751 0284 .220 19°
Linearly
Varying C
ying C
cp(xo)
%
1.500 671 .626 .0237 .1RS 192
1.882 .689 .707 L0268 .202 20
2.268 .702 .785% .0299 .218 20°

1

In the case labelled "Linearly varying C ", C

betwean Cp(l } = 1.5 (at vert) and Cp(xo) at the skire.

36
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which is exactly true only for Cc(xo), {s also approximately true
for the maximum value of Cc.

(vi) The fabric stress is greatest at or near this vent and
decreases as ve go toward the skirt. The exact location of the
maximum fabric stress dependson E as well as the pressure
distribution.,

(vii) Prom Table 2 we see that for constant pressure distributions,
changing the pressure scarcely aifects the shape and causes merely
proportional changes in the stresses. If the pressure increases
linearly in ¢ from the vent to the skirt, all quantities are affected.

We shall comment on these results in the following Section.
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5. DISCUSSION

The theory developed in this paper is apparently the first
in which the shape and stresses are calculated simultaneously.

To judge the theory we must of course compare it with experimental
results, In making this comparison it is first necessary to
understand clearly what the theory does.

If we are given a flat, circular canopy with known geometrical
and physical properties (respectively embodied in Ri' Ro, Lo’ G
and Ef, Ec’ and EL)’ dropping vertically at known velocity V through
air with known mass density, p, the analysis furnishes us with the
relations between the vressure distribution on one hand and the
shape, stresses and drag on the other. TIf the pressure distribution
is kunown, we can solve these relations (by means of the computer
program) to find the quantities of engineering interest. These
quantities will depend in general upon the pressure distribution.

An ideal experimental check on the theory would require that
simultaneous measurements of pressure distribution, stresses, shavoe
and drag be made on a canopy that is dropping vertically. Conditions
for such a test may be difficult or impossible to realize in practice,
and it appears that no experiments yet made will permit such a
complete check on the theory.

However, many experiments have been made that, while incomplete
in some respect, give us the information for a partial check on the
theory. For example, Berndt and Deveese3 made measurements on a
C-9 canopy in towed flight. Thelir results compare with the present

calculation for the basic configuration as follows:
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Me asured Calculated

C, = .65 c = .626
[o] [¢]
, D /D = .648 D /D = .671
P (o] P o]
o= 17¢ o = 19°

Their measured shape 1is plotted {n Figure 13. The general agreement
is good although the theuretical shape is slightly wider and shallower
than the experimental shape. We may conclude from this that the
precent theory 1is not grossly in error. However, it is necessary

to remark that, i{f we had assumed a different pressure distribution

in the calculations, we could have arrived at quite different values

for C , a8 I8 evident from Table 2.

o
The Parachute Handbook“ gives the general estimate

Dp/Do ~ .7,
which compares reasonably well with the present calculations,

D./D = .67 for the cords

P "o

= .73 for the gore centerlines.
Moreover, the observed generality of this estimate tends to confirm
the theory, which predicts that the shape is insensitive to changes
in most of the parameters.
The Parachute Bandbooka shovs many experimental results in which

c is seen to decrease with an increase in V. This does not agree,

n

atfirse sight, with our results, Table 1, which show that C

D,

incresses very slowly with an increagse in V. The discrepancy is

probably due to one or both of two causes:

38




(a) The canopy may not be descending vertically in the tests.
The theory assumes vertical descent and may give inaccurate results
{f the canopy oscillates or glides laterally.

(b) The pressure distributfon may chanpge as the velocity
changes. In particular, increasing velocity will cause increase
of the tensile stresses and strains in the fabric, and this will
lead to greater porosity of the fabric. The increasing porosity
will permit increasing alr flow from the high-pressure to the low
pressure side of the fabric. Thus the pressure di fference will not
increase as fast as the Impact pressure, or, {n other words, the
pressure~-difference coefficient, Cp, will decrease. This will
cause CD to decrease.

In :eneral we may say that the present theory represents a
first, admittedly somewhat crude, attempt to analyze parachutes
without assuming the deformed shape. Clearly, several of the
assumptions described in the Introduction are not very accurate,
notably (i1), and (v), while (iv) is probably inaccurate near the
maximum di{ameter. Nevertheless the results are pgood encugh to
suggest that the general procedure is a workable one which can be a

starting point for future efforts.

It is perhaps also useful to point out that this theorv represents
a step in the direction of calculating the ocopening behavicer of vara-
chutes. For a major part of the difficulty in the openinz problem
consists of estimating the shape and forces of the inflated part of
the canopy. The not-yet-inflated part cf the canopy is relativelv

easfly dealt with. The estimate of the shape and forces of the
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inflated part of the cancopy is much like that of a (smaller)
completely open canopy. We may anticipate, therefore, that the
present analysis, or one like {t, will be an integral part of an

analysis of opening behavior.
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NOMENCLATURE

Constants Iin canopy pressure distribution

Constants {n formulas for cosine function

Drag coefficient based on flat citrcular area

Coefficient of net pressure

Stress coefficients in cords, fahric

Diameters in opened and flat ¢frcular states
Elastic modulf of cords, fabric, load lines

1+(NC/RC)
Number of gores
Dimensionless load 1ine length

Length of load lines in undeformed and
deformed states

Tension force in cords, fabrice

Force resultants on cords in circumferential
and normal diractions

Dimensionless force ia cord, fabric

Dimensionless circumferential force resultant
on cords

Net outward pressure on gore fabric
Dimensionless pressure

Radius of particle !n flat circular state
Vent and skirt vradii in flat circular state
Radfus of cord in opened state

Vent and skirt radii in opened state

Circumferential radius of curvature of gore
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NOMENCLATURE (Cont'd)

Arc length of cord

Constants in formulas for sine function

Dimensionless elastic constants

Vertical velocity

Drag force

Dimensionless drag

Dimensionless radius in flat, circular state

Dimensionless skirt radius in flat circular
state

Dimensionless radius in opened state

Axial cylindrical coordinate of cords and
gore centerline

Dimensionless axial coordinate of cords and
gore centerline

Included angle of gore

Edge angle of gore bulge

Strains in cord, fabric, and load lines

Depth in bulge

Dimensionless depth of bulge

Angle between load line and axis

Load line length ratio =1 /D = JRi/(?R )

Mass density of air

Contact length between adjacent gores

Dimensionless contact length between adjacent
gores

Angle between cord direction and horizontal

¢ at the skire
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